|
|- |bgcolor=#e7dcc3|4-faces||50px |- |bgcolor=#e7dcc3|Cells||50px |- |bgcolor=#e7dcc3|Faces||50px |- |bgcolor=#e7dcc3|Cell figure||50px |- |bgcolor=#e7dcc3|Face figure||50px |- |bgcolor=#e7dcc3|Edge figure||50px |- |bgcolor=#e7dcc3|Vertex figure||50px |- |bgcolor=#e7dcc3|Dual||self-dual |- |bgcolor=#e7dcc3|Coxeter group||5, () |- |bgcolor=#e7dcc3|Properties||Regular |} In the geometry of hyperbolic 5-space, the 16-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called ''paracompact'' because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol , it has three 16-cell honeycombs around each cell. It is self-dual. == Related honeycombs== It is related to the regular Euclidean 4-space 16-cell honeycomb, . 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「16-cell honeycomb honeycomb」の詳細全文を読む スポンサード リンク
|